Use of a Multiplexed CMOS Microarray to Optimize and Compare Oligonucleotide Binding to DNA Probes Synthesized or Immobilized on Individual Electrodes

نویسندگان

  • Karl Maurer
  • Nina Yazvenko
  • Jodi Wilmoth
  • John Cooper
  • Wanda Lyon
  • David Danley
چکیده

The CombiMatrix microarray with 12,544 electrodes supports in situ electrochemical synthesis of user-defined DNA probes. As an alternative, we immobilized commercially synthesized DNA probes on individual electrodes coated with electropolymerized polypyrrole (Ppy). Hybridization was measured using a biotinylated target oligonucleotide and either Cy5-streptavidin and fluorescence detection or horseradish peroxidase-streptavidin and enzyme-enhanced electrochemical detection. Detection efficiencies were optimized by varying the deposition of the Ppy, the terminal groups on the DNA probes, and other factors that impacted fluorescence quenching and electrical conductivity. Optimized results were compared against those obtained using a microarray with the same DNA sequences synthesized in situ. Immobilized probes produced higher fluorescence signals, possibly by providing a greater stand off between the Cy5 on the target oligonucleotide and the quenching effects of the Ppy and the platinum electrode.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increasing hybridization rate and sensitivity of DNA microarrays using isotachophoresis.

We present an on-chip electrokinetic method to increase the reaction kinetics and sensitivity of DNA microarray hybridization. We use isotachophoresis (ITP) to preconcentrate target molecules in solution and transport them over the immobilized probe sites of a microarray, greatly increasing the binding reaction rate. We show theoretically and experimentally that ITP-enhanced microarrays can be ...

متن کامل

Fabrication of Unimolecular Double-stranded DNA Microarrays on Solid Surfaces for Probing DNA-Protein/Drug Interactions

We present a novel method for fabricating unimolecular double-stranded DNA microarrays on solid surfaces, which were used to probe sequence-specific DNA/protein interactions. For manufacturing the unimolecular double-stranded DNA microarrays, two kinds of special single-stranded oligonucleotides, constant oligonucleotide and target oligonucleotide, were chemically synthesized. The constant olig...

متن کامل

Real-time, multiplexed electrochemical DNA detection using an active complementary metal-oxide-semiconductor biosensor array with integrated sensor electronics.

Optical biosensing based on fluorescence detection has arguably become the standard technique for quantifying extents of hybridization between surface-immobilized probes and fluorophore-labeled analyte targets in DNA microarrays. However, electrochemical detection techniques are emerging which could eliminate the need for physically bulky optical instrumentation, enabling the design of portable...

متن کامل

Fabrication of DNA microarrays on nanoengineered polymeric ultrathin film prepared by self-assembly of polyelectrolyte multilayers.

Microarray-based technology is in need of flexible and cost-effective chemistry for fabrication of oligonucleotide microarrays. We have developed a novel method for the fabrication of oligonucleotide microarrays with unmodified oligonucleotide probes on nanoengineered three-dimensional thin films that are deposited on glass slides by consecutive layer-to-layer adsorption of polyelectrolytes. Un...

متن کامل

On-chip hybridization kinetics for optimization of gene expression experiments.

DNA microarray technology is a powerful tool for getting an overview of gene expression in biological samples. Although the successful use of microarray-based expression analysis was demonstrated in a number of applications, the main problem with this approach is the fact that expression levels deduced from hybridization experiments do not necessarily correlate with RNA concentrations. Moreover...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2010